

MATHEMATICS DEPARTMENT

Year 12 Methods - Test Number 1 - 2017

Differentiation of Exponential and

Trigonometric Functions

Resource Free

Name: So	LUTIONS		Teacl	her:	
Marks:	18				
Time Allowed:	20 minutes				
	ou are NOT allowed ou will be supplied				
1. Find $\frac{dy}{dx} f dx$ a) $y = \frac{1}{2} 1$					
	y=4e-4x	⇒ y' =	-16e-tx	= -16 e4x	///
				[-256e ⁶² [(4e ^{5k}) ²	
b) $y = 2$	$\sin^{*}(e^{2x})$				
y	= $2\cos(e^{2\pi}$ = $4e^{2\pi}.\cos(e^{2\pi}$	(e ² n)			

			0 2 22	r .	1.0		
C) 1	<i>)</i> =	$3x^2e^{2x}$	sim	plify	your	answer

v	1 =	32. 2e2x + 6xe2x	//
	. =	6x2e2x + 6xe2x	
	2	6x222 (2+1)	

d)
$$y = 3\pi \tan(1+e)^2$$

[3,3,3,3 = 12 Marks]

2. Find the equation of the tangent to the curve defined by $h = (e^{2t})(e^t + 1)^2$ at the point (0,4).

$$h = e^{2t} \left(e^{2t} + 2e^{t} + 1 \right)$$

$$= e^{4t} + 2e^{3t} + e^{2t}$$

$$\Rightarrow h' = 4e^{4t} + 6e^{3t} + 2e^{2t}$$

[6 Marks]

MATHEMATICS DEPARTMENT

Year 12 Methods - Test Number 1 - 2017 Differentiation of Exponential and Trigonometric Functions Resource Rich

Name:	SOLUTIONS	Teacher:	*******************
Marks:	26		
Time Allowed	: 25 minutes		
	You are allowed a ClassPad and You will be supplied with a form	,	

1) It is known that the amount of a dangerous 'recreational drug' (in mg) left unabsorbed in the bloodstream after t hours is given by

$$U = 100e^{-0.05t}$$

a) Show that the rate of change of U with respect to time is proportional to the amount of the drug remaining.

b) Find the time taken for 90% of the initial amount of the drug to be absorbed by the bloodstream. Give your answer to the nearest hour.

c) Find an expression that describes the amount of the drug absorbed by the bloodstream after thours.

[3,2,1 = 6 Marks]

2) a) The normal to a given curve at a point is defined as the perpendicular to the tangent at that point. Find the equation of the normal to the curve $y = \frac{e^x}{2-x}$ at the point where x = 1.

$$\frac{dy}{dn} = \frac{(2-x)e^{x} + e^{x}}{(2-x)^{2}}$$
When $x = 1$ $y = e$ $\frac{dy}{dn} = 2e$

Gradient of perpendicular = $-\frac{1}{2e}$

Using $(y-y_{1}) = y_{1}(x-x_{1})$

$$y - e = -\frac{1}{2e}(x-1)$$

$$y = -\frac{y}{2e} + e + \frac{1}{2e}$$

b) y = x + 1 is a tangent to the curve $y = ax + b \sin x$ at the point $(\frac{\pi}{2}, 1 + \frac{\pi}{2})$. Find a and b.

$$y = \alpha x + b \sin x$$
When $x = \frac{\pi}{2}$, $y = 1 + \frac{\pi}{2}$

$$\Rightarrow 1 + \frac{\pi}{2} = \alpha(\frac{\pi}{2}) + b$$

$$\Rightarrow b = 1 + \frac{\pi}{2} - \frac{\alpha \pi}{2} \Rightarrow y = ax + (1 + \frac{\pi}{2} - \frac{\alpha \pi}{2}) \sin x$$

$$\Rightarrow \frac{\pi}{2} = ax + (1 + \frac{\pi}{2} - \frac{\alpha \pi}{2}) \cos x$$

Tangut at $(\frac{T}{2}, 1+\frac{T}{2})$ is given as y = x+1When $x = \frac{T}{2}$, cor x = 0 hence dy = 1hence a = 1 and b = 1

[4,4 = 8 Marks]

- 3) Fishermen monitored the growth of the population of sardines in a particular location over a 30 year period from 1985 when the population was estimated to be 2 000 000. They found that the population was continuously growing with the instantaneous rate of increase in the population per year $\frac{dP}{dt}$, always close to $\frac{P}{20}$.
 - a) Estimate the population of sardines at the end of the 30 year period.

Note
$$\frac{1}{20} = 0.05$$

here $\frac{dP}{dk} = 0.05P$
 $\Rightarrow P = Poe^{0.05k} \checkmark$
When $k = 30$
 $P = 2000000e^{0.05(30)}$
 $\approx 8960000 \checkmark$

b) If this pattern of growth continues estimate the population of sardines in 2040.

In 2040,
$$t = 55$$

When $t = 55$
 $p = 20000000e^{0.05(55)}$
 ≈ 31000000

[3,3=6 marks]

- 4) The displacement, x cm, of a particle from a fixed point O, t seconds after it is released is modelled by the equation $x = -5\cos\frac{\pi t}{4}$. Use a calculus method to determine:
 - a) The velocity of the particle after 2 seconds,

$$\frac{dx}{dt} = \frac{5\pi}{4} \sin \frac{\pi t}{4} \checkmark$$

$$At t = 2$$

$$\frac{dx}{dt} = \frac{5\pi}{4} \sin \left(\frac{\pi}{2}\right)$$

$$= \frac{5\pi}{4} \cos^{2} \left(\frac{\pi}{2}\right)$$

$$= \frac{5\pi}{4} \cos^{2} \left(\frac{\pi}{2}\right)$$

b) When during the interval $0 \le t \le 8$, the particle travels with a speed of 1 cms⁻¹.

$$\frac{d\mu}{dt} = \pm 1$$

$$\frac{ST}{4} \sin \left(\frac{Tt}{4}\right) = 1$$

$$ST \sin \left(\frac{Tt}{4}\right) = -1$$

$$ST \sin \left(\frac{Tt}{4}\right) = -1$$

$$\Rightarrow t = 4.33, 7.67$$
Hence 4 time :
$$t = 3.67, 0.33, 4.33, 7.67$$

6 [≸ marks]

End of Test